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INTRODUCTION

The use and analysis of the signatures of light reflected by scattering sites in a
moving medium has been actively pursued for the determination of flow velocities.' -

A good overview of the subject was given by Adrian. " Here we address the
problem of the associated data reduction, in particular when the number of scatterers
is relatively small (the order of 100), and the particles are relatively large, of the order
of tens of microns; this is called"'particle image velocimetry (PIV).* ." -

Particle image velocimetry is of considerable interest, especially for flows where
there is only limited transverse motion, i.e.. where particles in the flow field generally
stay within well defined hyperplanes. In many situations of interest to ballisticians
these conditions are met. Spatial particle distributions within flows are of some
importance since they influence many processes of interest, including heat transfer and
velocity distributions of the carrier gas near bounding surfaces. In addition, since
excellent time resolution in the data acquisition is now possible with the use of pulsed
lasers, the simultaneous determination of the position and subsequent inference of
velocities of a large number of particles at the same time is a considerable
advancement over Laser Doppler Anemometry (LDA),5 where a large number of
measurements at the same location need to be performed to establish the required flow
statistics of a single point. Also. average measurements may not accurately reflect the
true nature of the flow behavior.

Going beyond current practice of recording the data on photographic film
followed by manual data reduction, we address the case when two frames of a scene,
separated by a small temporal displacement, are available from charge coupled device
(CCD) recordings. It is shown that, even in the case of hundreds of particles,
identification, tracking, and determination of particle velocities can be obtained within
minutes even on a slower mainframe computer. In the next section, a new algorithm
for PIV data reduction is described. This is followed by an example of a simulated
Poiseuille flow with one hundred embedded particles of identical shape. A random
motion has been superimposed on each of the particles as they traverse the flow field.
We conclude with an assessment of the developed technique.

GIVEN TRACKING PROBLEM

The particles under consideration can change in apparent shape and brightness
during their motion, since they move in and out of focus and also might be abrading.
Therefore, any potential tracking algorithm cannot cue on individual particle signatures
such as edge segments, shape, size or optical brightness. The particles must be
considered identical. The main guides to matching corresponding particles must
therefore be their positions and Incal configurations. The problem is further
exacerbated by the fact that only two images are to be given. Therefore, a detailed
history of particle shape and/or trajectory changes cannot be kept. We summarize the
problem as follows:

I. The particles undergo nonrigid motion with a strong random component.

2. Many particles are present, the order of uO or more. Hence, the fieid is
relatively densely populated.



3. The particles are identical, and placed in a uniform field. We equivalently
model the particles as uniform circular disks against a (different) uniform
background.

4. Only two images are given.

S. The time interval between images is large enough that particle travel of many
diameters can occur.

6. The deterministic component of motion is Poiseuille.

7. The number of particles is conserved, over the two images.

8. The aim is to establish the particle correspondences from image I to image 2.
Then the difference in corresponding particle positions gives the required
velocities.

One obvious method of establishing the correspondences, matched filtering,6 does
not apply because of premise 3 above. The method of optical flow,6-8 must also be
considered. It applies when the image scene is continuously changing both temporally
and spatially. For example, a camera is slowly panning across an image field.
However this requirement violates premises 3 and 5 above, according to which the
image field is binary, and discontinuous spatially, and the particle motion is large.
hence discontinuous temporally.

The open literature does not extensively treat this kind of tracking problem.
Published work on dynamic scene analysis,9-12 generally limit attention to either rigid or
quasi-rigid motion of a single, or at most a few, objects. This violates premises I and
2 above. Other authors. e.g., as in Ref. 13. allow for multiple particles but consider
cases where the field is rather sparsely populated, violating premise 2. and where
small particle travel occurs between frames, violating premise 5. Under these
conditions, there is no correspondence problem. Estimation of the particle positions,
and outputing a dot at each such position on an image screen, directly gives the
particle orbits. 13 An ingenious method of tracking multiple particles,14 is based on the
idea of predicting each particle's motion based on its past history. However, this
violates premise 4. according to which there is no extensive past history.

An analog method of multiple particle tracking was proposed, 5 which uses a far-
field, double exposed hologram as the recording medium for the two images. However,
this approach is limited in scope to two special scenarios: When the particles are
close to uniformly distributed over the images, or the particle movements do not
correlate with position. These are overly restrictive conditions for the given problem.

Much previous work in tracking has been motivated by the needs of the home
television industry, or by the problem of inferring 3-D shape from 2-D projections.
These have very little in common with the premises I - 8 at hand. By contrast,
medical blood cell tracking has much in common with our problem. The first
publication of this kind appears to be Ref. 16, where a system for tracking single
white blood cells is described. Then, in Ref. 17, an advance on this work was
reported, whereby the automatic tracking of many cells was carried out. The aim.
however, was not to establish the particle correspondences, but rather to estimate the
mean or aggregate motion of the blood cells. Hence, when multiple candidates for a
correspondence occur, one is arbitrarily selected: these events occur so infrequently
that the overall estimate of aggregate motion is not seriously affected. By contrast,
because of premise 2 above, such events will frequently happen in our problem.
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Also, each wrong decision on a correspondence gives directly a wrong velocity
estimate. Hence. we pay careful attention to the problem of multiple candidates.

Another medical tracking problem analogous to ours arises in 2-D gel
electrophoresis imagery. There. the aim is to match corresponding protein spots from
one gel image to another. The state-of-the-art matching procedure appears to be that
of lp and Potter;" see also Refs. 19 and 20. Their algorithm consists of a global
linear transformation applied to one image, followed by final, local matching with the
second by use of a "chamfering" technique. The linear transformation takes advantage
of the powerful prior knowledge that to good extent the two images are simply
translated and rotated versions of one another. Unfortunately, this is not true of
particles undergoing Poiseuille flow. Also, this linear step requires, for its execution,
the manual matching of many reference spots. e.g., 15 to 20 pairs in experiments cited.
This conflicts with our aim of a completely automated tracking procedure.

Skolnick"' has proposed an automatic matching approach in gel electrophoresis
imagery. Correspondences are established by a matching of graphs generated by
connecting each gel spot center (a "node") with lines ("edges") to its nearest neighbors.
If the graphs for corresponding spots in successive frames are similar enough, and if
they are not too separated spatially, then the spots are accepted as matched. This was
a proposed technique, without demonstration. Evidently, it depends for its utility on a
situation where most particles preserve their relative positions during motion. This
violates our premises I and 6. according to which the particle motion is nonuniform.

Finally. Greaves2 2 uses a simple nearest-neighbor rule. of Euclidean measure, to
select corresponding microorganisms in two microscopic slides viewed by a video
system. Unfortunately, this simple selection rule will not work in our problem, as will
become evident from demonstrations given later. The field is so crowded that the
correspondences so established will be strongly dependent upon the order with which
the pairings are made, and too often the nearest neighbor to a particle is the wrong
pairing for that particle.

PHYSICAL CONSIDERATIONS

A correspondence algorithm must be sought which does not rely on individual
object shape and/or brightness cues (see premise 3). The only ther cueing
information left is possible knowledge of particle dynamics, i.e., flow characteristics.
In fact, we have such knowledge. In our problem, the particles overall follow
Poiseuille-like flow, which is laminar and deterministic, with a superimposed random
component of motion exemplified by local eddies. Hence, in the net there should be
strong correlation of motion, but only over finite correlation distances. Effectively.
many neighboring particles move together, or "clump." Hence, preference should be
given to identifications that define commonly moving particles, or clumps.
Furthermore, the deterministic component of Poiseuille flow is assumed to take
precedent: given no further information, if a particle is observed to belong to more
than one clump, we presume that it should be identified with the larger clump,
provided this does not imply too large a correlation distance.

A second piece of prior information at hand is knowledge of a maximum possible
motion displacement rmax over the field. This can be deduced from knowledge of the
time interval r between exposures and an estimate of the maximum possible velocity of
a particle. With this information, potential correspondences that would require motions
greater than rmax can be ruled out. Furthermore, if rmax N/2. where N is the
image width (and height), a computational time and core storage advantage results (see
below).
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IMPLEMENTATION OF PHYSICAL CONSTRAINTS: THE TRACKING ALGORITHM

A mathematical operation that permits the incorporation of clumping and
maximum distance considerations is that of cross correlation. See the flow diagram in
Figure 1. step (c). If image I is cross correlated with image 2, the global maximum in
the output will occur at a lag, or spatial vector displacement between the images,
where the largest number of particles overlap. This defines the largest clump. The
second-largest maximum will occur at a lag for which the second-largest number of
particles overlap; etc, for all significant maxima within the largest possible
displacement radius rmax. Let there be M in all. The maxima were found by simply
centering a 3x3 cross shaped window upon each output point. A maximum is defined
to occur when the center point is higher than its four neighbors within the cross. The
M lag maxima describe the vector displacements of M clumps of particles from image
I to image 2. In a general scenario, there will be many clumps of commonly moving
particles, each moving by a generally different amount and in a different direction.
Although the cross-correlation outputs do not identify which particles moved together to
form each maximum, they at least identify the lags in question. With these known, a
different computer operation identifies the particles within each clump. This is
described in the third paragraph following.

The cross correlation operation was also chosen because it is convenient to
implement digitally. Let image I be denoted as f. image 2 denoted as g. The Fast
Fourier Transform (FFF) algorithm permits the cross correlation f e g to be computed
for two images f and g, as 3

f a g - FFT-1 IFFT(f) FFT(g)*} . (I)

The asterisk denotes a complex conjugate, and the -1 indicates an inverse FFT. The
FFT algorithm is notably fast. Also, by Eq. (1), only three FFT operations need be
done to produce the required output that locates the lag maxima. Finally, size
considerations should he mentioned. If the images f and g are N×N pixels, then
ordinarily the output f @ g will be 2Nx2N pixels. i.e.. four times the area of each
input. However, if it is known that no particle has been translated from f to g by
greater than N/2 pixels. i.e.. rmax N/2. then all output maxima must instead lie
within an NxN central field of the output. This permits a reduction in required
computer core storage by a factor of 8 (factors of 2 in each direction, plus a factor of
2 for the complex arithmetic used).

A further size reduction was enforced. By extensive use of disk intermediary
storage files, it is possible to require but one core storage array of dimension
(2, N. N). Without the use of such disk files, three such arrays would have been
needed, plus seven of dimension (N, N). For an image of size N = 128 or larger, this
amounts to a considerable reduction in core storage requirement.

Assume that, in a pre-processing step, every particle in the two images is
replaced by an identical disk of known (x. y) position. See steps (a), (b) in Figure 1.
The particle.. within each clump were then identified in the following way. (See step
(e) of Figure 1.) Displace image 2 from image I by one of the Ni lags defined abo\.
Then for each particle position in image 1, every particle position in image 2 is
sampled to see if the two particle disks overlap. Of all such overlapped disks, the
pair with the smallest mutual displacement is chosen as defining a particle-pair
correspondence. With the given scenario of little a priori knowledge governing particle
motion, it is logical to prefer nearest-neighbor pair identifications over all candidates
that are otherwise equally valid.
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Pro-proces the two images by cross
correlating each with a single particle

(a) disk, to determine particle positions in
the images. i

(b) Replace each particle by a disk
centered on the particle.

(C) Cross-correlate the two images,
determining the M lag maxima positions.

(d) Re-order these lags to correspond to
increasing cross-correlation values

Identify corresponding particles at each
(e) successive lag, by overlap-nearest-

neighbor rule. Update correspondences
at each successive lag, bumping pre-
vious correspondences when required.

(f) Re-identify non-identified remaining
particles by nearest-neighbor rule.

I
(g) Interchange pairs of correspondences if

total squared displacement is reduced.

Figure 1. Flow diagram of tracking algorithm.

The M lags are ordered such that their corresponding cross correlation maxima

increase in size. before the foregoing identifications are made. See step (d) in Figure

1. Then at each lag, a new set of particle correspondences is established as above.

with each such set replacing any conflicting correspondences established at previous

lags. For example, if at lag I particle 10 of image I is identified with particle 8 of

image 2. i.e.. identification (10, 8) is made; while at lag 2 identification (10. 5) is

made, then identification (10, 5) takes precedence. until possibly at some subsequent lag

particle 10 is assigned to yet a different particle of image 2. In this way, the larger

clumps associated with the later lags are given preference in defining particle

identifications.
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As with the nearest-neighbor rule described above, this is intuitively a correct
choice. If the particle flow was perfectly smooth and laminar, all particles would
travel together in one grand clump. However, the extent to which random eddies and
other sources of randomness actually creep in is not known. Hence, it makes sense to
give preference to large scale, or laminar, flow.

Notice that in the previous step particle 8 in image 2 was "bumped" as a
possible candidate for an identification. After looping over all lags in the previous
step, there will be a list of such bumped particles from image 2. Likewise, there will
be a list of still-unassigned particles from image I (those that did not have an
overlapped disk, for any lag, with a particle in image 2). These two lists must
somehow be matched up 1:1. At this point, all clumping tendencies have been
established. The only rule left for match up is the nearest-neighbor rule. Hence, we
loop over all such image I particles, finding the closest image 2 particle, and then
eliminating each from its list. (See step () of Figure 1). This is admittedly an
imperfect procedure, since the identifications will depend somewhat upon the order in
which the particles are processed. For example, the particle pair (3, 8) may define the
smallest particle distance to particle 3 of image I, but 8 may have already been
assigned to particle 2 of image I on the basis of closeness to 2. In practice, this kind
of error does not happen very often. However, to minimize its occurrence a
subsequent processing step is taken, (g) of Figure I.

In this step, each identification (mi, ni), i= ...... P. where P is the total
number of particles in each image, is compared with every other identification (m nJ),
j 0 i, to see if an interchange of identifications, to (mi , nj), (mj, ni ) will produce a

smaller total displacement distance over both pairings, If it does, then the interchange
is made. Again, this rule gives preference to small displacements. In practice, the
rule eliminates all or nearly all errors described in the previous paragraph.

DEMONSTRATION

Figure 2 shows a simulated case study of particle identification. To aid
visualization, image I consists of a regular lOxO grid of particles. shown as white
diamonds (discrete versions of circles). Field size is 128x128 pixels. The 100 particles
are simulated to obey randomized Poiseuille flow, generally to the right. The center
row of particles move maximally and the top and bottom rows minimally, according to
a parabolic dependence on row. (The top and bottom rows are taken to be near the
walls of a pipe containing the flow. Because of frictional interactions with the walls,
particles close to them tend to move less than those in the main flow in the middle.)
The center row has the maximum parabolic displacement, value rmax. Parameter rmax
was given the value 6.0 pixels.

Each particle's direction of flow is made to depart randomly from the horizontal.
with maximum randomness again at the walls since this is where eddy currents tend
to maximally occur. The result is the black particle positions in Figure 2. As
examples of extreme directional randomness, notice the lower-left most black particle
positions. The black particles comprise image 2.

These two images were then processed, according to tracking algorithm (a)
through (g) of Figure 1. At step (c), M = 5 lag maxima were found withji. the
feasible region defined by rmax. The result is the correspondences shown by black
connecting lines in Figure 2. (Where a black pixel and a white one overlap, as in the
upper-left most pair, the black one dominates.) These results are encouraging, since
every particle was correctly tracked.
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Figure 2. Simulated tracking problem. White particles are in image I.
black particles in image 2. Correspondences established by the tracking
algorithm are designated by black connecting lines.

It is interesting to compare these results with what a simple nearest-neighbor rule
might have given. On the basis of nearest neighbors, some erroneous identifications
would be made, and some would be ambiguous. For example, consider the white
particle in row 6. column 9. Its nearest black neighbor is to its left. 6 pixels away.
However, the tracking algorithm correctly paired it ir~tead with the particle to its
right, distance (62 + 32)1/2 = 6.3 pixels away. Although this distance is larger, it was
identified by the program with a large clump of commonly moving particles, and hence
was given preference at step (e) of the algorithm. Also, for many particles nearest-
neighbors would have led to an impasse, since two white particles e.xist ' 'hich are 'he

same distance from a given black one. For example, consider the white particle
located at row 3. column 3. The black particles to its immediate left and right are
each distance (62 + 12)1/2 from it. A supplementa, y rule would have had to be
invented in order to resolve the ambiguity.

DISCUSSION

Although the results in Figure 2 are typical, the algorithm does not of course
always work this well. The central consideration is the amount of particle motion
compared with the interparticle distances. If a black particle has moved so much that
it overtakes the white particle immediately to its right, it might be erroneously
identified with the latter white particle. Hence. particle movement should be less than
the interpiirticle distances in image I.

1IMM~n l-l"'7



Another factor of importance is the designated size of the disks. Notice that disk
size. as employed in the algorithm, does not have to t2 the actual or physical disk
size. In practice, disk size only enters into the algorithm in step (e), where it is used
as a kind of interaction distance. Specifically, it defines candidate correspondences for
an image 1 particle. To be a candidate, an image 2 particle must overlap the disk of
the image I particle. (The closest such image 2 particle is then selected.) Obviously,
then, the size taken for the disk governs the chosen set of candidates. With too small
a disk size, such a small set of candidates might be generated that the correct
candidate is missed. Or, too large a disk will too strongly favor the last lags used in
step (e), i.e. will tend to make correspondences that all correspond to maximum clump
size. Hence, disk size is a useful tuning parameter. A good disk size is identified by
reasonable looking correspondences, in the itidgment of the user. For the results
shown in Figure 2, the chosen disk radius was 2 pixels, as shown. This was the
second run of the problem. In the first, a disk radius of I pixel was used instead.
This res,'lted in all correspondences but eight in row 9 being correct, a success rate of
92/100. Hence, the algorithm is fairly tolerant of disk size. A range of disk sizes
will give good results.

The simulation shown in Figure 2 was carried out by a Cyber 175 mainframe
computer. CPU time was 51 sec. and central memory required 60,200 octal words in
total (including all program statements and all execution arrays.) A major part of the
CPU time was taken by the seven FFT operations performed--three to locate particle
positions in image I. three similarly for image 2. and one more to cross correlate
image I with image 2. For 128x128 pixel images, it was empirically found that CPU
time t varies with particie number P according to a linear relation

t - P/3 + 20 sec. I : P 100. (2)

Since the FFT operations are, of course. independent of P, the 20 sec contribution to
Eq. (2) must be due to them. All other operations in the tracking algorithm require
P/3 sec, over the indicated range of P. This bodes well for applications to larger
problems, where P might be the order of 1000 particles, providing that approximate
linearity holds for these P values as well.

CONCLUSIONS

A tracking algorithm has been developed that satisfactorily tracks 100 or more
identical particles. Time and storage requirements are modest, with CPU time
approximately linear in the number of particles. For proper use, particle movements
should not exceed interparticle distances in image I. Program operation is adjustable
by an iisput effective particle size parameter, which is varied until satisfactory
correspondences are made. Application of the algorithm to 1000 or more particles
seems a reasonable future prospect.
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